3.646 \(\int \frac{(d+e x)^2}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=356 \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} \left (g^2 \left (3 c d^2-a e^2\right )+2 c e f (e f-3 d g)\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 c^{3/2} g^2 \sqrt{a+c x^2} \sqrt{f+g x}}+\frac{4 \sqrt{-a} e \sqrt{\frac{c x^2}{a}+1} \sqrt{f+g x} (e f-3 d g) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 \sqrt{c} g^2 \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}}}+\frac{2 e^2 \sqrt{a+c x^2} \sqrt{f+g x}}{3 c g} \]

[Out]

(2*e^2*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(3*c*g) + (4*Sqrt[-a]*e*(e*f - 3*d*g)*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*
EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*Sqrt[c]*g^2
*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) - (2*Sqrt[-a]*((3*c*d^2 - a*e^2)*g^2 + 2*
c*e*f*(e*f - 3*d*g))*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[S
qrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*c^(3/2)*g^2*Sqrt[f + g*x]*Sqr
t[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.404872, antiderivative size = 356, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {931, 24, 844, 719, 424, 419} \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} \left (g^2 \left (3 c d^2-a e^2\right )+2 c e f (e f-3 d g)\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 c^{3/2} g^2 \sqrt{a+c x^2} \sqrt{f+g x}}+\frac{4 \sqrt{-a} e \sqrt{\frac{c x^2}{a}+1} \sqrt{f+g x} (e f-3 d g) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 \sqrt{c} g^2 \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}}}+\frac{2 e^2 \sqrt{a+c x^2} \sqrt{f+g x}}{3 c g} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

(2*e^2*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(3*c*g) + (4*Sqrt[-a]*e*(e*f - 3*d*g)*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*
EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*Sqrt[c]*g^2
*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) - (2*Sqrt[-a]*((3*c*d^2 - a*e^2)*g^2 + 2*
c*e*f*(e*f - 3*d*g))*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[S
qrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*c^(3/2)*g^2*Sqrt[f + g*x]*Sqr
t[a + c*x^2])

Rule 931

Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[(2*e^2*(
d + e*x)^(m - 2)*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(c*g*(2*m - 1)), x] - Dist[1/(c*g*(2*m - 1)), Int[((d + e*x)^(
m - 3)*Simp[a*e^2*(d*g + 2*e*f*(m - 2)) - c*d^3*g*(2*m - 1) + e*(e*(a*e*g*(2*m - 3)) + c*d*(2*e*f - 3*d*g*(2*m
 - 1)))*x + 2*e^2*(c*e*f - 3*c*d*g)*(m - 1)*x^2, x])/(Sqrt[f + g*x]*Sqrt[a + c*x^2]), x], x] /; FreeQ[{a, c, d
, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegerQ[2*m] && GeQ[m, 2]

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
 LeQ[m, -1]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(d+e x)^2}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx &=\frac{2 e^2 \sqrt{f+g x} \sqrt{a+c x^2}}{3 c g}-\frac{\int \frac{-d \left (3 c d^2-a e^2\right ) g+e \left (a e^2 g+c d (2 e f-9 d g)\right ) x+2 c e^2 (e f-3 d g) x^2}{(d+e x) \sqrt{f+g x} \sqrt{a+c x^2}} \, dx}{3 c g}\\ &=\frac{2 e^2 \sqrt{f+g x} \sqrt{a+c x^2}}{3 c g}-\frac{\int \frac{-e^2 \left (3 c d^2-a e^2\right ) g+2 c e^3 (e f-3 d g) x}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx}{3 c e^2 g}\\ &=\frac{2 e^2 \sqrt{f+g x} \sqrt{a+c x^2}}{3 c g}-\frac{(2 e (e f-3 d g)) \int \frac{\sqrt{f+g x}}{\sqrt{a+c x^2}} \, dx}{3 g^2}+\frac{1}{3} \left (3 d^2-\frac{a e^2}{c}+\frac{2 e f (e f-3 d g)}{g^2}\right ) \int \frac{1}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx\\ &=\frac{2 e^2 \sqrt{f+g x} \sqrt{a+c x^2}}{3 c g}-\frac{\left (4 a e (e f-3 d g) \sqrt{f+g x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} g x^2}{\sqrt{-a} \left (c f-\frac{a \sqrt{c} g}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} \sqrt{c} g^2 \sqrt{\frac{c (f+g x)}{c f-\frac{a \sqrt{c} g}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (2 a \left (3 d^2-\frac{a e^2}{c}+\frac{2 e f (e f-3 d g)}{g^2}\right ) \sqrt{\frac{c (f+g x)}{c f-\frac{a \sqrt{c} g}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} g x^2}{\sqrt{-a} \left (c f-\frac{a \sqrt{c} g}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} \sqrt{c} \sqrt{f+g x} \sqrt{a+c x^2}}\\ &=\frac{2 e^2 \sqrt{f+g x} \sqrt{a+c x^2}}{3 c g}+\frac{4 \sqrt{-a} e (e f-3 d g) \sqrt{f+g x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 \sqrt{c} g^2 \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{c} f+\sqrt{-a} g}} \sqrt{a+c x^2}}-\frac{2 \sqrt{-a} \left (3 d^2-\frac{a e^2}{c}+\frac{2 e f (e f-3 d g)}{g^2}\right ) \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{c} f+\sqrt{-a} g}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 \sqrt{c} \sqrt{f+g x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 3.63422, size = 473, normalized size = 1.33 \[ \frac{2 \sqrt{f+g x} \left (\frac{g \sqrt{f+g x} \sqrt{\frac{g \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{f+g x}} \sqrt{-\frac{-g x+\frac{i \sqrt{a} g}{\sqrt{c}}}{f+g x}} \left (2 \sqrt{a} \sqrt{c} e (e f-3 d g)-i a e^2 g+3 i c d^2 g\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}{\sqrt{f+g x}}\right ),\frac{\sqrt{c} f-i \sqrt{a} g}{\sqrt{c} f+i \sqrt{a} g}\right )}{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}-\frac{2 e g^2 \left (a+c x^2\right ) (e f-3 d g)}{f+g x}-2 i c e \sqrt{f+g x} \sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}} (e f-3 d g) \sqrt{\frac{g \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{f+g x}} \sqrt{-\frac{-g x+\frac{i \sqrt{a} g}{\sqrt{c}}}{f+g x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}{\sqrt{f+g x}}\right )|\frac{\sqrt{c} f-i \sqrt{a} g}{\sqrt{c} f+i \sqrt{a} g}\right )+e^2 g^2 \left (a+c x^2\right )\right )}{3 c g^3 \sqrt{a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

(2*Sqrt[f + g*x]*(e^2*g^2*(a + c*x^2) - (2*e*g^2*(e*f - 3*d*g)*(a + c*x^2))/(f + g*x) - (2*I)*c*e*Sqrt[-f - (I
*Sqrt[a]*g)/Sqrt[c]]*(e*f - 3*d*g)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c]
 - g*x)/(f + g*x))]*Sqrt[f + g*x]*EllipticE[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c
]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)] + (g*((3*I)*c*d^2*g - I*a*e^2*g + 2*Sqrt[a]*Sqrt[c]*e*(e*f - 3*d
*g))*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*Sqrt[f + g
*x]*EllipticF[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f
+ I*Sqrt[a]*g)])/Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]))/(3*c*g^3*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.263, size = 1769, normalized size = 5. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2/3*((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(
1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/(
(-a*c)^(1/2)*g+c*f))^(1/2))*(-a*c)^(1/2)*a*e^2*g^3-3*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/
2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a
*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*(-a*c)^(1/2)*c*d^2*g^3+6*(-(g*x+f)
*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c
)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g
+c*f))^(1/2))*(-a*c)^(1/2)*c*d*e*f*g^2-2*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c
)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-
c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*(-a*c)^(1/2)*c*e^2*f^2*g+6*(-(g*x+f)*c/((-a*c)
^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-
c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/
2))*a*c*d*e*g^3-3*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*(
(c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(
1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*a*c*e^2*f*g^2+3*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)
^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/
((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*c^2*d^2*f*g^2-6*(-(g*x+f)*c/((
-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/
2)*g-c*f))^(1/2)*EllipticE((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f)
)^(1/2))*a*c*d*e*g^3+2*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1
/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticE((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a
*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*a*c*e^2*f*g^2-6*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(
-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticE((-(g*x+
f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*c^2*d*e*f^2*g+2*(-(g*x+f)
*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c
)^(1/2)*g-c*f))^(1/2)*EllipticE((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g
+c*f))^(1/2))*c^2*e^2*f^3+x^3*c^2*e^2*g^3+x^2*c^2*e^2*f*g^2+x*a*c*e^2*g^3+a*c*e^2*f*g^2)*(g*x+f)^(1/2)*(c*x^2+
a)^(1/2)/c^2/g^3/(c*g*x^3+c*f*x^2+a*g*x+a*f)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2}}{\sqrt{c x^{2} + a} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^2/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )} \sqrt{c x^{2} + a} \sqrt{g x + f}}{c g x^{3} + c f x^{2} + a g x + a f}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((e^2*x^2 + 2*d*e*x + d^2)*sqrt(c*x^2 + a)*sqrt(g*x + f)/(c*g*x^3 + c*f*x^2 + a*g*x + a*f), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{2}}{\sqrt{a + c x^{2}} \sqrt{f + g x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x)**2/(sqrt(a + c*x**2)*sqrt(f + g*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2}}{\sqrt{c x^{2} + a} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^2/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)